Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection∗

نویسنده

  • Stefan Güttel
چکیده

Matrix functions are a central topic of linear algebra, and problems of their numerical approximation appear increasingly often in scientific computing. We review various rational Krylov methods for the computation of large-scale matrix functions. Emphasis is put on the rational Arnoldi method and variants thereof, namely, the extended Krylov subspace method and the shift-and-invert Arnoldi method, but we also discuss the nonorthogonal generalized Leja point (or PAIN) method. The issue of optimal pole selection for rational Krylov methods applied for approximating the resolvent and exponential function, and functions of Markov type, is treated in some detail.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated parameter selection for rational Arnoldi approximation of Markov functions

Rational Arnoldi is a powerful method for approximating functions of large sparse matrices times a vector. The selection of asymptotically optimal parameters for this method is crucial for its fast convergence. We present a heuristic for the automated pole selection when the function to be approximated is of Markov type, such as the matrix square root. The performance of this approach is demons...

متن کامل

Uniform Approximation of φ-Functions in Exponential Integrators by a Rational Krylov Subspace Method with Simple Poles

We consider the approximation of the matrix φ-functions that appear in exponential integrators for stiff systems of differential equations. For stiff systems, the field-of-values of the occurring matrices is large and lies somewhere in the left complex half-plane. In order to obtain an efficient method uniformly for all matrices with a field-of-values in the left complex half-plane, we consider...

متن کامل

Superlinear convergence of the rational Arnoldi method for the approximation of matrix functions

A superlinear convergence bound for rational Arnoldi approximations to functions of matrices is derived. This bound generalizes the well-known superlinear convergence bound for the CG method to more general functions with finite singularities and to rational Krylov spaces. A constrained equilibrium problem from potential theory is used to characterize a max-min quotient of a nodal rational func...

متن کامل

Generalized Rational Krylov Decompositions with an Application to Rational Approximation

Generalized rational Krylov decompositions are matrix relations which, under certain conditions, are associated with rational Krylov spaces. We study the algebraic properties of such decompositions and present an implicit Q theorem for rational Krylov spaces. Transformations on rational Krylov decompositions allow for changing the poles of a rational Krylov space without recomputation, and two ...

متن کامل

Nleigs: a Class of Robust Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems∗

A new rational Krylov method for the efficient solution of nonlinear eigenvalue problems, A(λ)x = 0, is proposed. This iterative method, called fully rational Krylov method for nonlinear eigenvalue problems (abbreviated as NLEIGS), is based on linear rational interpolation and generalizes the Newton rational Krylov method proposed in [R. Van Beeumen, K. Meerbergen, and W. Michiels, SIAM J. Sci....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012